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Abstract
Let C�(V, g) be the real Clifford algebra associated with the real vector space
V , endowed with a nondegenerate metric g. In this paper, we study the class of
Z2-gradings of C�(V, g) which are somehow compatible with the multivector
structure of the Grassmann algebra over V . A complete characterization for
such Z2-gradings is obtained by classifying all the even subalgebras coming
from them. An expression relating such subalgebras to the usual even part of
C�(V, g) is also obtained. Finally, we employ this framework to define spinor
spaces, and to parametrize all the possible signature changes on C�(V, g) by
Z2-gradings of this algebra.

PACS numbers: 02.10.Hh, 02.10.Ud, 03.65.Fd
Mathematics Subject Classification: 15A66, 15A75, 16W55, 81R05

1. Introduction

Clifford algebras have long been an important tool in the interplay among geometry, algebra
and physics. The development of the theory of spinor structures, with applications in field and
string theories, and the study of Dirac operators, with applications in geometry and topology,
are examples of this general setting. These algebras carry Z2-graded structures which play a
major role in such developments. For example, the usual Z2-graded structure of the Clifford
bundle over a Riemannian manifold may be used to construct models of supersymmetric
quantum mechanics, which have unveiled deep connections between field theory and geometry
4 Present address: Departament de Comunicacions i Teoria del Senyal, Universitat Ramon Llull, CP 08022,
Barcelona, Catalonia, Spain.
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[1]. Also, in Hestenes’ approach to Dirac theory [2–4], the usual Z2-grading of the spacetime
algebra is extensively employed to represent spinors by even elements of this algebra (such an
approach has a natural generalization for arbitrary Clifford algebras [5]).

Let V be a finite-dimensional real vector space endowed with a metric g. By this we mean
that g : V ×V → R is a bilinear, symmetric and nondegenerate map. Let C�(V, g) be the real
Clifford algebra associated with (V , g). As a vector space, C�(V, g) is naturally Z-graded
by the multivector structure inherited from the Grassmann algebra �(V ) over V . This is
the usual Chevalley construction (see equation (2)). However, as an algebra, C�(V, g) is not
Z-graded, but only Z2-graded and, in general, such Z2-gradings do not have to preserve in
any sense the homogeneous subspaces of �(V ) ∼= C�(V, g) ( ∼= denotes linear isomorphism
in this expression).

In this paper, we study the class of Z2-gradings of C�(V, g) which are somehow compatible
with the usual multivector structure of �(V ) (see definition 3). In section 2, we completely
characterize such Z2-gradings by classifying all the even subalgebras coming from them.
Also, a formula relating such arbitrary even subalgebras to the usual even part of C�(V, g) is
obtained.

In the next section, some preliminary applications are considered. We start by discussing
the possibility of employing these arbitrary Z2-gradings to define spinor spaces, as in [5, 6].
After that, we consider the problem of signature change in an arbitrary Clifford algebra. There
are various situations in theoretical physics where changing the signature of a given space
is an useful tool, as in Euclidean formulations of field theories, in the theory of instantons,
in finite temperature field theory and in lattice gauge theory. In [7, 8], the authors discuss
the specific signature changes (1, 3) → (3, 1) and (1, 3) → (4, 0) inside the spacetime
algebra (in the last case, the corresponding signature change map is used to study the Dirac
equation, and self-dual/anti-self-dual solutions of gauge fields). In section 3.2, we generalize
such approaches in order to obtain completely arbitrary signature change maps in Clifford
algebras of any dimension. As in the aforementioned works, our method is purely algebraic,
and is implemented by a deformation of the algebraic structure underlying the theory. More
specifically, the Z2-gradings discussed above are employed to deform the original Clifford
product, thereby ‘simulating’ the product properties of the signature-changed space. As a
result, we parametrize all the possible signature changes on C�(V, g) by Z2-gradings of this
algebra. This opens the possibility of applying this formalism to higher dimensional physical
theories.

The concept of Z2-graded structures has numerous applications in mathematical physics
(as in supersymmetry, supergeometry, etc). It is then reasonable to expect that the present
work may find other applications besides those considered here and outlined above.

1.1. Algebraic preliminaries and notation

A vector space W is said to be graded by an Abelian group G if it is expressible as a
direct sum W = ⊕

iWi of subspaces labelled by elements i ∈ G (we refer the reader to
appendix A of [9] for a general review of algebraic concepts). Here we consider only the cases
when G is given by Z or Z2. Then, the elements of Wi are called homogeneous of degree i and
we define deg(w) = i if w ∈ Wi . Let A be an algebra which, for the purposes of this paper,
can always be considered as a finite-dimensional associative algebra with unit, over R or C.
We say that A is graded by G if (a) its underlying vector space is a G-graded vector space and
(b) its product satisfies deg(ab) = deg(a) + deg(b).

Let V be an n-dimensional real vector space. Then, the tensor algebra T (V ) =⊕∞
k=0T

k(V ) over V is an example of a Z-graded algebra. We denote the space of
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antisymmetric k-tensors by �k(V ). The elements of this space will be called k-vectors.
Let V ∧ = ⊕n

k=0�
k(V ) denote the 2n-dimensional real vector space of multivectors over V .

Using the natural embeddings of R and V in V ∧, we identify �0(V ) with R and �1(V )

with V . When endowed with the exterior product ∧, the vector space V ∧ becomes the so-
called Grassmann algebra �(V ) = (V ∧,∧) over V . We note that �(V ) = ⊕n

k=0�
k(V ) is

another example of a Z-graded algebra, with a Z-graded structure inherited from the usual
Z-grading of T (V ). It is important to note that such Z-grading for �(V ) is by no means unique
[10, 11]. Nevertheless, suppose that one wants to identify V with the tangent space (at a certain
point) of a spacetime M. Then, in the context of this usual grading, one can interpret elements
of �0(V ) as scalars, elements of �1(V ) as tangent vectors of M and so on. In this paper, we
always consider the multivector structure coming from such usual Z-grading of �(V ) (more
discussion along these lines can be found in [6]).

We denote the projection of a multivector a = a0 + a1 + · · · + an, with ak ∈ �k(V ), on its
p-vector part by 〈a〉p := ap. The parity operator (·)∧ is defined as the algebra automorphism
generated by the expression v̂ = −v on vectors v ∈ V . The reversion (·)∼ is the algebra
anti-automorphism generated by the expression ṽ = v on vectors v ∈ V. It follows that
â = (−1)ka and ã = (−1)[k/2]a if a ∈ �k(V ), where [m] denotes the integer part of m.
When V is endowed with a metric g, it is possible to extend (in a non-unique way) g to all
of V ∧. Given a = u1 ∧ · · · ∧ uk and b = v1 ∧ · · · ∧ vl with ui, vj ∈ V , the expressions
g(a, b) = det(g(ui, vj )), if k = l, and g(a, b) = 0, if k �= l, provide one such extension.
Also, the left (�) and right (�) contractions on the Grassmann algebra are respectively defined
by g(a�b, c) = g(b, ã ∧ c) and g(b�a, c) = g(b, c ∧ ã), with a, b, c ∈ �(V ).

The Clifford product between a vector v ∈ V and a multivector a in V ∧ is given by
va = v ∧ a + v�a. This is extended by linearity and associativity to all of V ∧. The resulting
algebra is the so-called Clifford algebra C�(V, g). Note that, although the underlying vector
space of C�(V, g) (i.e. V ∧) is Z-graded, C�(V, g) is not a Z-graded algebra as, for example, the
Clifford product between two 1-vectors is a sum of elements of degrees 0 and 2. Nevertheless,
there are (infinite) Z2-gradings which are compatible with the Clifford product structure.
For instance, the usual Z2-grading of C�(V, g) is given by C�+(V , g) ⊕ C�−(V , g) where
C�+(V , g) = ⊕

k even�
k(V ) and C�−(V , g) = ⊕

k odd�
k(V ). When the metric g has signature

(p, q), we will also denote the real vector space V endowed with g by R
p,q . In this case,

the real Clifford algebra C�(V, g) over V will be denoted by C�p,q(R) or C�p,q . We adopt
the definition C�p,q(C) = C�p,q(R) ⊗ C for the complexified Clifford algebra (of course,
all the C�p,q(C) with fixed p + q are isomorphic as complex algebras). Note that given
1-vectors x, y ∈ R

p,q , we have 2g(x, y) = xy + yx. In particular, an orthonormal basis {ei}
of R

p,q yields eiej + ejei = 2gij , where gij = g(ei, ej ). In the following, we denote by
M(m, K) the space of m × m matrices over K, where K = R, C or H.

We observe that there are other ways of defining Clifford and Grassmann algebras (see,
for example, chapter 14 of [7] and chapters 1 and 2 of [9]). In the definitions adopted here, both
the Grassmann and the Clifford algebras are defined on the same underlying vector space V ∧.
This will be particularly useful in section 3.2, where we consider various Clifford products
defined, at the same time, on V ∧.

It is well known that real Clifford algebras exhibit an 8-fold periodicity and can be
classified by C�p,q(R) ∼=M(m, R) ⊗ A, where A is given by table 1 and m is fixed by
m2 dimR A = 2n, with n = p + q .

The usual even subalgebras C�+
p,q(R) can be shown to satisfy

C�+
p,q(R) ∼= C�q,p−1(R) ∼= C�p,q−1(R) ∼= C�+

q,p(R). (1)

In this way, their classification follows from table 1, as table 2 shows.
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Table 1. Classification of real Clifford algebras C�p,q (R) ∼= M(m, R) ⊗ A, where
m2 dimR A = 2n and n = p + q.

p − q (mod 8) 0 1 2 3 4 5 6 7

A R R ⊕ R R C H H ⊕ H H C

Table 2. Usual even parts of real Clifford algebras C�+
p,q (R) ∼= M(m,R) ⊗ B, where

m2 dimR B = 2n−1 and n = p + q.

p − q (mod 8) 0 1 2 3 4 5 6 7

B R ⊕ R R C H H ⊕ H H C R

Table 3. Classification of complex Clifford algebras.

Even dimension C�2k(C) ∼= M(2k, C)

Odd dimension C�2k+1(C) ∼= M(2k, C) ⊕ M(2k, C)

The classification of the complex Clifford algebras is simpler, as table 3 shows (in this
table, ∼= denotes isomorphism of complex algebras).

Clifford algebras may also be characterized by their universal property, in the sense of the
well-known theorem below.

Theorem 1. Let V be a finite-dimensional real vector space endowed with a nondegenerate
metric g. Let A be a real associative algebra with unit 1A. Given a linear map � : V → A
such that (�(v))2 = g(v, v)1A, there exists a unique homomorphism �̄ : C�(V, g) → A such
that �̄|V = �.

A map � as in theorem 1 will be called a Clifford map for the pair (V , g). An important
example is given by the Clifford map � : V → End(V ∧), defined by

�(v) = v ∧ +v� (2)

which implements the well-known Chevalley identification of C�(V, g) with a subalgebra of
End(V ∧).

2. Z2-gradings of Clifford algebras

By abuse of notation, we will denote an arbitrary Z2-grading of C�(V, g) simply by
C�(V, g) = C�0 ⊕ C�1. In this way, (the vector space structure of) C�(V, g) is given by
a direct sum of subspaces C�i, i = 0, 1, which satisfy

C�iC�j ⊆ C�i+j (mod 2). (3)

Of course, C�0 is then a subalgebra of C�(V, g). For each such decomposition we have
an associated vector space automorphism α : C�(V, g) → C�(V, g) defined by α|C�i

=
(−1)i idC�i

(where idW denotes the identity map on the space W ). The projections πi on
C�i are given by πi(a) = a+(−1)iα(a)

2 . We also denote πi(a) = ai . Note that α is an algebra
isomorphism, for given a, b ∈ C�(V, g), we have α(ab) = α

(∑
ij aibj

) = ∑
ijα(aibj ) =∑

ij (−1)i+j aibj = ∑
i(−1)iai

∑
j (−1)jbj = α(a)α(b). For the usual Z2-grading, where
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C�0 = C�+
p,q(R) and C�1 = C�−

p,q(R), the grading automorphism is simply given by (·)∧ (see
section 1.1).

Given a Z2-grading of C�(V, g) as above, we refer to C�0 and C�1 as the α-even and α-odd
parts of C�(V, g). Also, an element belonging to C�0 (C�1) will be called α-even (α-odd).

We observe that the scalar 1 ∈ �0(V ) is always α-even. Indeed, let us write 1 = e + o,
where e = π0(1) and o = π1(1). Left-multiplying this equation by e yields e = e2 + eo. As
e and e2 are α-even and eo is α-odd, we must have eo = 0. Then, right-multiplying 1 = e + o

by o yields o = o2. As o is α-odd and o2 is α-even, we thus have o = 0.
Let us now address the central point of the present paper. In the general Z2-gradings

introduced so far, the even and odd projections do not have to preserve the multivector
structure of �(V ) (see an example later). In other words, it is possible that the even or odd
part of a k-vector comprises an inhomogeneous combination of elements of different degrees.

Proposition 2. Let C�(V, g) = C�0 ⊕ C�1 be a Z2-grading with grading automorphism α.
The following are equivalent 5:

(i) The projections πi, i = 0, 1, preserve each �k(V ), k = 1, . . . , n;
(ii) πi(V ) ⊆ V, i = 0, 1;

(iii) α preserves each �k(V ), k = 1, . . . , n;
(iv) α(V ) ⊆ V .

Proof. It follows from the definition of πi that πi(�
k(V )) ⊆ �k(V ) if, and only

if, α(�k(V )) ⊆ �k(V ). Thus (i) ⇔ (iii) and (ii) ⇔ (iv). Of course, (iii) ⇒ (iv).
Conversely, if we assume (iv), then α|V (see footnote 5) is an isometry. Indeed, given
x, y ∈ V, 2g(α(x), α(y)) = α(x)α(y) + α(y)α(x) = α(xy + yx) = 2g(x, y), since α is
an algebra isomorphism and α(1) = 1 (as we mentioned earlier). If {ei} is an orthonormal
basis of V , every element a ∈ �k(V ) can be written as a linear combination of terms such
as ei1 ∧ · · · ∧ eik = ei1 · · · eik . As α|V is an isometry, {α(ei)} is also an orthonormal basis of
V and thus α

(
ei1 · · · eik

) = α
(
ei1

) · · · α(
eik

) = α
(
ei1

) ∧ · · · ∧ α
(
eik

) ∈ �k(V ). It follows that
α(a) ∈ �k(V ), establishing (iv) ⇒ (iii). �

Definition 3. A Z2-grading fulfilling one (and hence all) of the conditions above will be said
to preserve the multivector structure of �(V ).

For this class of Z2-gradings, we have the following proposition.

Proposition 4. Let C�(V, g) = C�0 ⊕ C�1 be a Z2-grading preserving the multivector structure
of �(V ) and define Vi := V ∩ C�i, i = 0, 1, i.e., V0 (V1) is the space of α-even (α-odd)
1-vectors (see footnote 5). Then V = V0 ⊕ V1, with V0 = V1

⊥ (and V1 = V0
⊥). It follows

that each subspace Vi is nondegenerate (i.e. g restricted to Vi is nondegenerate).

Proof. By assumption, each projection πi preserves V . This immediately induces a Z2-
grading for the vector space V , so that V = V0 ⊕ V1. Moreover, such a decomposition
is orthogonal. Indeed, given x ∈ V0 and y ∈ V1, we have xy + yx = 2g(x, y). As the
left-hand side belongs to C�1 and the right-hand side to C�0, we must have g(x, y) = 0. Thus
V0 ⊥ V1 and, in particular, V0 ⊆ V1

⊥. By counting dimensions, we finally have V0 = V1
⊥

(for dim(V0) + dim(V1) = n and dim(V1) + dim(V1
⊥) = n). �

5 In the following, we make the usual identification of V with �1(V ) (as mentioned in section 1.1). In particular, items
(ii) and (iv) of proposition 2 can be written, in a more precise way, as πi(�

1(V )) ⊆ �1(V ) and α(�1(V )) ⊆ �1(V ),

respectively.
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Let the metric g have signature (p, q), with p + q = n, and let us denote the vector space V ,
endowed with g, by R

p,q (as in section 1.1). By proposition 4, we can choose orthonormal basis
B0 = {v1, . . . , va} and B1 = {va+1, . . . , va+b} of V0 and V1 respectively. Then, {v1, . . . , va+b}
is an orthonormal basis for R

p,q and thus
{
1, vi1 · · · vik : 1 � i1 � · · · � ik � n, k = 1, . . . , n

}
is an orthonormal basis for C�p,q(R). It follows from (3) that C�0 is generated (as an algebra)
by elements of the form

(i) vi with i � a (4a)

(ii) vivj with i, j > a. (4b)

This leads to a straightforward characterization of C�0. Let pi (qi) be the number of elements
in Bi squaring to +1 (−1). As we work within C�p,q(R), we have p = p0 +p1 and q = q0 +q1.

Then, equations (4) imply that C�0
∼= C�p0,q0 ⊗ C�+

p1,q1
, where the tensor product is over R

and comes from the fact that the elements in (i) and (ii) commute. We summarize this result
in the following proposition.

Proposition 5. Let C�p,q(R) = C�0 ⊕ C�1 be a Z2-grading preserving the multivector
structure of �(Rp,q). Then

C�0
∼= C�p0,q0 ⊗ C�+

p−p0,q−q0
(5)

where p0 (q0) is the number of α-even elements of an orthonormal basis of R
p,q squaring to

+1 (−1).

Note the following:

(i) If p0 = q0 = 0, then equation (5) reduces to C�0 = C�+
p,q(R), as expected. We refer to

this case as the usual Z2-grading of C�p,q(R).
(ii) If p0 = p and q0 = q , then C�0 = C�p,q(R) and C�1 = 0. Therefore, this case

corresponds to the trivial Z2-grading of C�p,q(R). Moreover, this is the unique choice for
p0 and q0 which yields the trivial Z2-grading.

It follows that every non-trivial Z2-grading, preserving the multivector structure of �(V ),
provides an invertible α-odd element u (for example, any basis 1-vector in V1 squaring to
±1 can be chosen for u). This can be used to construct the isomorphism of vector spaces
C�0 → C�1, x �→ ux. Thus, the class of Z2-gradings considered here is such that either

(a) dimC�0 = dim C�p,q(R) (trivial case) (6a)

or

(b) dimC�0 = 1
2 dim C�p,q(R). (6b)

At this point, it is interesting to consider some examples of Z2-gradings that do not
preserve the multivector structure of �(V ). For simplicity, let us momentarily regard the real
Clifford algebra C�(V, g) as an algebra of m × m matrices, as in table 1. Let us define C�0

and C�1 as, respectively, the spaces of matrices of the form(
A 0a×b

0b×a B

)
and

(
0a×a C

D 0b×b

)

where A and B are square matrices of order a and b, respectively, with a + b = m. It is
easy to see that this gives a Z2-grading for C�(V, g) for any choice of a and b. In particular,
if m > 2, we can choose nonzero a and b such that a �= b. As a result, we end up with
a non-trivial Z2-grading with dim C�0 �= 1

2 dim C�p,q(R). It follows from equations (6) that
such Z2-grading does not preserve the multivector structure of �(V ).
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Table 4. Even subalgebras (C�0) associated with Z2-gradings preserving the multivector structure
of �(Rp,q ). The table exhibits D in C�0 ∼=M(k,R) ⊗ D, where k2 dimR D = 2n−1 and n = p+q.
Here, p − q and p0 − q0 should be considered mod 8 and mod 4 respectively.

p − q

p0 − q0 0 1 2 3 4 5 6 7

0 R ⊕ R R C H H ⊕ H H C R

1 R ⊕ R R ⊕ R ⊕ R ⊕ R R ⊕ R C ⊕ C H ⊕ H H ⊕ H ⊕ H ⊕ H H ⊕ H C ⊕ C

2 C R R ⊕ R R C H H ⊕ H H

3 C C ⊕ C C C ⊕ C C C ⊕ C C C ⊕ C

Let us now return to the study of the Z2-gradings preserving the multivector structure of
�(Rp,q). The explicit formula for C�0 in proposition 5 can be used to obtain a complete
classification for these algebras. In fact, a straightforward calculation (using the facts
that C ⊗ C ∼= C ⊕ C, C ⊗ H ∼= C ⊗ M(2, R) and H ⊗ H ∼= M(4, R)) shows that
C�0

∼= M(k, R) ⊗ D, where D is given by table 4 and k is fixed by k2 dimR D = 2n−1,
where n = p + q . It is interesting to note that this yields an overall 4-fold periodicity in terms
of p0 − q0.

We see from table 4 that C�0 is not always a Clifford algebra. For instance, when
p − q = 1 (mod 4) and p0 − q0 = 1 (mod 4), we have C�0

∼=M(k, R) ⊗ (R ⊕ R ⊕ R ⊕ R),
and we know that no Clifford algebra has this form.

3. Applications

Now we consider some simple applications of the framework developed in the previous section.
In section 3.1, we outline a possible use of the Z2-gradings studied here to define spinor spaces,
as in [5, 6]. In section 3.2, we analyse an algebraic method for changing the signature of
arbitrary real Clifford algebras, as advanced in the introduction.

3.1. Spinor spaces

The identification of the even part of a Clifford algebra with a space of spinors is mostly known
in the context of Hestenes’ formulation of Dirac theory [2–4]. In such an approach, the state
of the electron is described by an operator spinor [12] � ∈ C�+

1,3(R) satisfying the so called
Dirac–Hestenes equation, ∂�e21 = m�e0 (here {eµ} is an orthonormal frame in Minkowski
space, corresponding to a given observer, and ∂ = eµ∂µ). We observe that the space of operator
spinors is more than a vector space, it is an algebra. This leads, among other things, to an
elegant canonical decomposition for � , which generalizes the polar decomposition of complex
numbers. The Dirac–Hestenes equation is covariant under a change of frame/observer, for
another choice {e′

µ} must be related to the old one by e′
µ = UeµŨ , with U ∈ Spin+(1, 3),

yielding ∂� ′e′
21 = m� ′e′

0, where � ′ = �Ũ . On the other hand, the usual (matrix) Dirac
equation is known to be covariant under a larger class of transformations, in which the gamma
matrices γµ are transformed by SγµS−1, where S is an arbitrary unitary matrix (this amounts
to a change in the gamma matrix representation).

By considering this kind of transformation, it is possible to derive multivector Dirac
equations associated with a large class of gamma matrix representations, including the
standard, Majorana and chiral ones [6]. The resulting spinor spaces can be identified with
even subalgebras C�0 of the kind considered in the previous section. Indeed, the generalized
Dirac–Hestenes equation in this context reads ∂̆�σ + m�u = 0, where � ∈ C�0, σ and u are
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any commuting α-even and α-odd elements, respectively, satisfying σ 2 = −1 and u2 = 1, and
∂̆� := π0(∂)�u + π1(∂)� (see [6] for details). It follows that the resulting operator spinor
spaces for the Dirac theory are isomorphic to either M(2, C) or H ⊕ H. This method gives
rise to a generalized spinor map, relating algebraic and operator spinors, which was used by us
[6] to rederive certain quaternionic models of (the usual) quantum mechanics and to provide a
natural way to obtain gamma matrix representations in terms of the enhanced H-general linear
group GL(2, H) · H

∗ [13].
Let us now briefly consider more general Clifford algebras than C�1,3(R). As was shown

by Dimakis, it is always possible to represent a given C�p,q(R) in itself, with a corresponding
spinor space isomorphic to a subalgebra of the original algebra. This is done in [5], where
such a subalgebra is obtained by taking the even part of successive Z2-gradings of C�p,q(R).
Moreover, this subalgebra is a real Clifford algebra by itself. Let us now outline a slight
generalization of this procedure, in which the corresponding Z2-gradings are given as in the
previous section. As we have seen, the resulting even subalgebra is not necessarily a real
Clifford algebra in this case.

First of all, we note that the even subalgebra C�0 is in general too large to be taken as the
space of spinors, which is classically given by a minimal one-sided ideal I in C�p,q(R) [14].
Indeed, we have shown in the previous section that, for the (non-trivial) Z2-gradings considered
here, dim C�0 = 1

2 dim C�p,q(R). Thus, I and C�0 have the same dimension only for Clifford
algebras isomorphic to 2 × 2 matrices, i.e., for C�2,0(R) ∼= M(2, R), C�3,0(R) ∼= M(2, C)

and C�1,3(R) ∼= M(2, H) (modulo isomorphisms) (see also section 10.8 of [7]). As we
have already mentioned, the case C�1,3(R) was analysed in [6]. On the other hand, for the
Clifford algebra C�3,0(R), which is related to Pauli theory in the same way as C�1,3(R) is
related to Dirac theory, our method leads to spinor spaces isomorphic to H,M(2, R) or C⊕C

(see table 4). Note that, as C ⊕ C is not a real Clifford algebra, this case is not given by
Dimakis’ method. A study of the Pauli equation along the lines of [6] would then result in
three different (i.e. non-isomorphic) corresponding spinor algebras for this case.

For higher dimensional Clifford algebras, we can successively take C�0, C�00 = (C�0)0

and so on, having in mind that the prescription given by equation (5) works only when we have
a real Clifford algebra involved. In the other cases, one might consider further generalizations
of equation (5), such as C�+

p0,q0
⊗ C�+

p−p0,q−q0
or C�p0,q0 ⊗ C�++

p−p0,q−q0
.

3.2. Signature change in Clifford algebras

Let us now associate with each Z2-gradingC�(V, g) = C�0 ⊕ C�1, with corresponding grading
automorphism α, the linear map �α : V → End(V ∧) given by (cf equation (2))

�α(v) = v ∧ +α(v)�.

Proposition 6. If the above Z2-grading preserves the multivector structure of �(V ), then �α

is a Clifford map for the pair (V , gα), where given u, v ∈ V , the deformed metric gα is defined
by gα(u, v) = g(u0, v0) − g(u1, v1), with ui = πi(u), vi = πi(v), i = 0, 1 (see footnote 5).

Proof. As the Z2-grading is assumed to preserve the multivector structure of �(V ), we
have α(v) ∈ V , ∀v ∈ V . This yields (�α(v))2(x) = (v ∧ +α(v)�)(v ∧ x + α(v)�x) =
v ∧ (α(v)�x) + α(v)�(v ∧ x) = (α(v)�v)x,∀x ∈ V . Therefore, (�α(v))2 = g(α(v), v)1�(V )

and thus

(�α(v))2 =
{
g(v, v)1�(V ) if v ∈ V0

−g(v, v)1�(V ) if v ∈ V1

where Vi := V ∩ C�i, i = 0, 1 (as in the previous section). �



Z2-gradings of Clifford algebras and multivector structures 4403

Under the conditions above, we can define a Clifford product ∨α in V ∧, associated with
�α, by

v ∨α a = v ∧ a + α(v)�a v ∈ V a ∈ V ∧

extended by linearity and associativity to all of V ∧. It follows that (V ∧,∨α) is the Clifford
algebra associated with (V , gα), where gα is defined in proposition 6.

Given v ∈ V and a ∈ �k(V ), with vi := πi(v), this product is related to the original
Clifford product (denoted by juxtaposition) by v ∨α a = v0 ∧ a + v0�a + v1 ∧ a − v1�a =
v0a + (−1)k(a ∧ v1 + a�v1) = v0a + âv1. Therefore, the signature-changed product ∨α may
be written in terms of the original one as

v ∨α a = v0a + âv1 (7)

where v ∈ V and a ∈ V ∧. A more general expression for the ∨α-product between arbitrary
multivectors may be obtained from the above formula by recursion.

Consider now the situation where one wants to change the metric signature from (p, q)

to (r, s), with p + q = r + s (see the introduction for a discussion on the instances where this
can be useful). To accomplish that, we emulate the Clifford product associated with this new
metric inside the algebraic structure of C�p,q , i.e., using only the algebraic data of C�p,q . More
specifically, suppose that the square of some basis vectors ei1, . . . , eik , of an orthonormal basis
{e1, . . . , en} ∈ R

p,q , is required to change sign in this new setting, i.e., when viewed inside
the signature-changed space. We then define a suitable Z2-grading for C�p,q by declaring
ei1, . . . , eik as α-odd and the remaining basis vectors as α-even. In other words, we choose
the α-parity of the elements in {e1, . . . , en} by

C�0 C�1

1-vectors remaining ei ei1 , . . . , eik

and let this choice generate the Z2-grading in which α-even (α-odd) elements are products of

(a) an even (odd) number of elements in
{
ei1 , . . . , eik

}
;

(b) any number of elements in {e1, . . . , en}
∖{

ei1 , . . . , eik

}
.

By the above proposition, the corresponding ∨α-product clearly implements the desired
signature change C�p,q → C�r,s . To clarify what is going on, we observe that we initially
have a space of multivectors V ∧ = ⊕n

k=0�
k(V ) (which is not an algebra). Then, various

products can be defined on V ∧. As we have seen, endowing V ∧ with the exterior product leads
to the Grassmann algebra �(V ) = (V ∧,∧), while endowing V ∧ with the Clifford product
leads to the Clifford algebra C�p,q = (V ∧, Clifford product). In the same way, the above
arguments show that the Clifford algebra associated with the signature-changed metric (with
signature (r, s)) is given by C�r,s = (V ∧,∨α). Moreover, the ∨α-product is parametrized by
Z2-gradings and is related to the original Clifford product by equation (7).

Some examples are in order:

(i) For the trivial Z2-grading, where C�0 = C�p,q , i.e.,

C�0 C�1

1-vectors e1, . . . , en —
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we have α = idC�p,q (R) and thus ∨α = [original product]. In other words, the trivial
Z2-grading yields the trivial signature change (none).

(ii) For the usual Z2-grading, i.e.,

C�0 C�1

1-vectors — ei1 , . . . , en

we have α|Rp,q = −idR
p,q and thus ∨α yields a change to the opposite metric

C�p,q → C�q,p. A straightforward calculation shows that given a, b ∈ C�p,q , we have
a ∨α b = b0a0 + b0a1 + b1a0 − b1a1, where ai = πi(a) and bj = πj(b). This is precisely
the tilt transformation introduced by Lounesto in [7].

(iii) For the Z2-grading

C�0 C�1

1-vectors e1, . . . , ek−1, ek+1, . . . , en ek

we have C�p,q → C�p−1,q+1 if ek originally squares to +1 and C�p,q → C�p+1,q−1 if ek

originally squares to −1.
(iv) Finally, for the arbitrary Z2-grading

C�0 C�1

1-vectors remaining ei ei1 , . . . , ei|r−p|

we have an arbitrary signature change C�p,q → C�r,s . Therefore, the product ∨α

parametrizes all the possible signature changes in C�p,q by means of Z2-gradings.

As a final remark, we note that Lounesto’s tilt transformation can be alternatively
generalized by the following prescription. Given ai ∈ C�i, bj ∈ C�j , we may define
ai ∨′

α bj := (−1)ijbiaj , and extend ∨′
α as a bilinear product in V ∧. A straightforward

calculation shows that ∨′
α is associative and preserves the Z2-graded structure of C�p,q

in question, in the sense that C�i ∨′
α C�j ⊆ C�i+j (mod 2). By defining convenient Z2-

gradings exactly as above, we see that ∨′
α also provides general signature change maps

C�p,q → C�r,s . However, the usual relation between the exterior product and the Clifford
product must be accordingly changed. As a matter of fact, given two 1-vectors x, y ∈ V ,
we have x ∧ y = 1

2 (xy − yx) but x ∧ y = ∑
ij (−1)ij 1

2 (yi ∨′
α xj − xj ∨′

α yi), where
xi = πi(x), yj = πj (y). In Lounesto’s tilt to the opposite metric C�1,3 → C�3,1, the latter
expression simplifies to 1

2 (x ∨′
α y − y ∨′

α x), but it is easy to see that, in general, this is not
the case.

4. Concluding remarks

We studied in detail an important class of Z2-graded structures on a real Clifford algebra
C�(V, g). The corresponding Z2-gradings C�0 ⊕ C�1 are required to preserve the multivector
structure of the underlying Grassmann algebra over V (see definition 3). A complete
classification for the associated even subalgebras, i.e., for C�0, was obtained. As preliminary
applications, we first outlined the possibility of using such general even subalgebras as spinor
spaces. After that, we employed such Z2-graded structures to deform the Clifford product of
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C�(V, g), thereby parametrizing all the possible signature changes on this algebra. This can be
useful in signature changing applications in theoretical physics (see the introduction). As we
also mentioned in the introduction, the pervasiveness of Z2-graded structures in mathematical
physics allows us to expect that yet other applications are likely to be found.

As a last remark, we would like to note that the opposite path to that considered here,
with a fixed Z2-grading and alternative multivector structures, has been receiving considerable
interest in the literature. Applications range from models in QFT [15] to q-quantization of
Clifford algebras [16] (see also [11] and references therein).
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